Engineering Surface Micro-structure to Control Fouling and Hysteresis in Droplet Based Microfluidic Bioanalytical Systems

نویسندگان

  • Ashutosh Shastry
  • Sidhartha Goyal
  • Aziel Epilepsia
  • Marianne J. Case
  • Shaghayegh Abbasi
  • Buddy Ratner
  • Karl F. Böhringer
چکیده

This paper presents the principle, fabricated structure, characterization and experimental results obtained for a new class of surfaces—“hydrophobic non-fouling surfaces”—for droplet-based microfluidics. Building on the theory of wetting of rough surfaces, we have developed novel surfaces which are chemically hydrophilic, i.e., the droplet is in contact with a non-fouling hydrophilic material but has high contact angle as a result of thermodynamically stabilized air traps beneath the droplet. This paper also presents the experimental characterization of rough superhydrophobic surfaces, dynamic measurements of sliding angles of water droplets, and a modeling approach to estimate bounds on contact angle hysteresis—a major dissipative mechanism in droplet based microfluidic systems. A comprehensive study of the dependence of hysteresis on texture parameters is presented to evaluate the current model, propose a modification, and show that the two models—original and modified—provide useful bounds on the hysteresis of the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrophobic Non-fouling Surfaces for Droplet Based Microfluidic Bioanalytical Systems

This paper presents the principle, fabricated structure, characterization and results obtained for a new class of surfaces—“hydrophobic non-fouling surfaces”—for droplet-based microfluidics. Building on the theory of wetting of rough surfaces, we have developed novel surfaces which are chemically hydrophilic, i.e., the droplet is in contact with a non-fouling hydrophilic material but exhibits h...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Bounds on Contact Angle Hysteresis of Textured Super-hydrophobic Surfaces

This paper presents the fabrication of rough super-hydrophobic surfaces, dynamic measurements of sliding angles of water droplets, and a modeling approach to estimate bounds on contact angle hysteresis—the major dissipative mechanism in droplet based microfluidic systems. We investigate the dependence of hysteresis on texture parameters, evaluate the current model, propose a modification, and s...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006